Matrices and Determinants 2 Question 35

39. For all values of A,B,C and P,Q,R, show that

(1994,4M)

cos(AP)cos(AQ)cos(AR)cos(BP)cos(BQ)cos(BR)=0cos(CP)cos(CQ)cos(CR)

Show Answer

Solution:

  1. Let Δ=|cos(AP)cos(AQ)cos(AR) cos(BP)cos(BQ)cos(BR) cos(CP)cos(CQ)cos(CR)|

Δ=∣cosAcosP+sinAsinPcos(AQ) cosBcosP+sinBsinPcos(BQ) cosCcosP+sinCsinPcos(CQ)

cos(AR)

cos(AR)cos(BR)cos(CR)

sinAsinPcos(AQ)cos(AR)

+sinBsinPcos(BQ)cos(BR) sinCsinPcos(CQ)cos(CR)

Δ=cosPcosAcos(AQ)cos(AR) cosBcos(BQ)cos(BR) cosCcos(CQ)cos(CR)

sinAcos(AQ)cos(AR)+sinPsinBcos(BQ)cos(BR)sinCcos(CQ)cos(CR)

Applying C2C2C1cosQ,C3C3C1cosR in first determinant and C2C2C1sinQ and in second determinant

Δ=cosP|cosAsinAsinQsinAsinR cosBsinBsinQsinBsinR cosCsinCsinQsinCsinR| sinAcosAcosQcosAcosR +sinPsinBcosBcosQcosBcosR sinCcosCcosQcosCcosR

sinAcosAcosA +sinPcosQcosRsinBcosBcosB sinCcosCcosC

Δ=0+0=0

n!(n+1)!(n+2)!



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक