Matrices and Determinants 2 Question 33

«««< HEAD

37. Find the value of the determinant $\left|\begin{array}{ccc}b c & c a & a b \ p & q & r \ 1 & 1 & 1\end{array}\right|$, where $a, b$ and $c$ are respectively the $p$ th, $q$ th and $r$ th terms of a harmonic progression.

======= ####37. Find the value of the determinant $\begin{vmatrix}b c & c a & a b \\ p & q & r \\ 1 & 1 & 1\end{vmatrix}$, where $a, b$ and $c$ are respectively the $p$ th, $q$ th and $r$ th terms of a harmonic progression.

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed

(1997C, 2M)

Show Answer

Answer:

Correct Answer: 37. (0)

Solution:

  1. Since, $a, b, c$ are $p$ th, $q$ th and $r$ th terms of HP.

$\Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \text { are in an AP. } $

$\frac{1}{a}=A+(p-1) D $

$\frac{1}{b}=A+(q-1) D $

$\frac{1}{c}=A+(r-1) D \quad$ ….(i)

Let $\Delta=\begin{vmatrix}b c & c a & a b \\ p & q & r \\ 1 & 1 & 1\end{vmatrix}=a b c\begin{vmatrix}\frac{1}{a} & \frac{1}{b} & \frac{1}{c} \\ p & q & r \\ 1 & 1 & 1\end{vmatrix}$

$ =a b c\begin{vmatrix} A+(p-1) D & A+(q-1) D & A+(r-1) D \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix} $

Applying $R _1 \rightarrow R _1-(A-D) R _3-D R _2$

$ =a b c\begin{vmatrix} 0 & 0 & 0 \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix} \Rightarrow 0 \Rightarrow\begin{vmatrix} b c & c a & a b \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix}=0 $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक