Matrices and Determinants 2 Question 31

35. Prove that for all values of $\theta$

(\left|| \sin \theta\right.) | $\cos \theta$ | $\sin 2 \theta$ | | :—: | :—: | :—: | | $\sin \theta+\frac{2 \pi}{3}$ | $\cos \theta+\frac{2 \pi}{3}$ | $\sin 2 \theta+\frac{4 \pi}{3}$ | | $\sin \theta-\frac{2 \pi}{3}$ | $\cos \theta-\frac{2 \pi}{3}$ | $\sin 2 \theta-\frac{4 \pi}{3}$ |$|=0$

(2000, 3M)

Show Answer

Solution:

  1. Let $\Delta=$

$$ \begin{aligned} & \sin \theta+\frac{2 \pi}{3} \quad \cos \theta+\frac{2 \pi}{3} \quad \sin 2 \theta+\frac{4 \pi}{3} \\ & \sin \theta-\frac{2 \pi}{3} \quad \cos \theta-\frac{2 \pi}{3} \quad \sin 2 \theta-\frac{4 \pi}{3} \end{aligned} $$

Applying $R _2 \rightarrow R _2+R _3$

$$ =\mid \begin{array}{lll} \sin \theta & \cos \theta & \sin 2 \theta \\ \sin \theta+\frac{2 \pi}{3} & \cos \theta+\frac{2 \pi}{3} & \sin 2 \theta+\frac{4 \pi}{3} \\ +\sin \theta-\frac{2 \pi}{3} & +\cos \theta-\frac{2 \pi}{3} & +\sin 2 \theta-\frac{4 \pi}{3} \\ \sin \theta-\frac{2 \pi}{3} & \cos \theta-\frac{2 \pi}{3} & \sin 2 \theta-\frac{4 \pi}{3} \end{array} $$

Now, $\sin \theta+\frac{2 \pi}{3}+\sin \theta-\frac{2 \pi}{3}$

$$ \begin{aligned} & =2 \sin \frac{\theta+\frac{2 \pi}{3}+\theta-\frac{2 \pi}{3}}{2} \cos \frac{\theta+\frac{2 \pi}{3}-\theta+\frac{2 \pi}{3}}{2} \\ & =2 \sin \theta \cos \frac{2 \pi}{3}=2 \sin \theta \cos \pi-\frac{\pi}{3} \\ & =-2 \sin \theta \cos \frac{\pi}{3}=-\sin \theta \end{aligned} $$

and $\cos \theta+\frac{2 \pi}{3}+\cos \theta-\frac{2 \pi}{3}$

$$ \begin{aligned} & =2 \cos \frac{\theta+\frac{2 \pi}{3}+\theta-\frac{2 \pi}{3}}{2} \cos \frac{\theta+\frac{2 \pi}{3}-\theta+\frac{2 \pi}{3}}{2} \\ & =2 \cos \theta \cos \frac{2 \pi}{3}=2 \cos \theta-\frac{1}{2}=-\cos \theta \end{aligned} $$

and $\sin 2 \theta+\frac{4 \pi}{3}+\sin 2 \theta-\frac{4 \pi}{3}$

$$ \begin{aligned} & =2 \sin \frac{2 \theta+\frac{4 \pi}{3}+2 \theta-\frac{4 \pi}{3}}{2} \cos \frac{2 \theta+\frac{4 \pi}{3}-2 \theta+\frac{4 \pi}{3}}{2} \\ & =2 \sin 2 \theta \cos \frac{4 \pi}{3}=2 \sin 2 \theta \cos \pi+\frac{\pi}{3} \\ & =-2 \sin 2 \theta \cos \frac{\pi}{3}=-\sin 2 \theta \\ & \therefore \Delta=\begin{array}{ccc} \sin \theta & \cos \theta & \sin 2 \theta \\ -\sin \theta & -\cos \theta & -\sin 2 \theta \\ \sin \theta-\frac{2 \pi}{3} & \cos \theta-\frac{2 \pi}{3} & \sin 2 \theta-\frac{4 \pi}{3} \end{array}=0 \end{aligned} $$

[since, $R _1$ and $R _2$ are proportional]



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक