Matrices and Determinants 2 Question 31

35. Prove that for all values of θ

(\left|| \sin \theta\right.) | cosθ | sin2θ | | :—: | :—: | :—: | | sinθ+2π3 | cosθ+2π3 | sin2θ+4π3 | | sinθ2π3 | cosθ2π3 | sin2θ4π3 ||=0

(2000, 3M)

Show Answer

Solution:

  1. Let Δ=

sinθ+2π3cosθ+2π3sin2θ+4π3sinθ2π3cosθ2π3sin2θ4π3

Applying R2R2+R3

=∣sinθcosθsin2θsinθ+2π3cosθ+2π3sin2θ+4π3+sinθ2π3+cosθ2π3+sin2θ4π3sinθ2π3cosθ2π3sin2θ4π3

Now, sinθ+2π3+sinθ2π3

=2sinθ+2π3+θ2π32cosθ+2π3θ+2π32=2sinθcos2π3=2sinθcosππ3=2sinθcosπ3=sinθ

and cosθ+2π3+cosθ2π3

=2cosθ+2π3+θ2π32cosθ+2π3θ+2π32=2cosθcos2π3=2cosθ12=cosθ

and sin2θ+4π3+sin2θ4π3

=2sin2θ+4π3+2θ4π32cos2θ+4π32θ+4π32=2sin2θcos4π3=2sin2θcosπ+π3=2sin2θcosπ3=sin2θΔ=sinθcosθsin2θsinθcosθsin2θsinθ2π3cosθ2π3sin2θ4π3=0

[since, R1 and R2 are proportional]



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक