Matrices and Determinants 2 Question 30

33. If $M$ is a $3 \times 3$ matrix, where $M^{T} M=I$ and $\operatorname{det}(M)=1$, then prove that $\operatorname{det}(M-I)=0$

(2004, 2M)

Show Answer

Solution:

  1. Since, $M^{T} M=I$ and $|M|=1$

$ \therefore \quad|M-I|=I M-M^{T} M $

$ \Rightarrow|M-I|=\left(I-M^{T}\right) M=(I-M)^{T}$ $|M|=|I-M| $

$ =(-1)^{3}|M-I|$

$[\because I-M \text { is a } 3 \times 3 \text { matrix }] $

$ =-|M-I| $

$ \Rightarrow \quad 2|M-I|=0 $

$ \Rightarrow \quad|M-I|=0$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक