Matrices and Determinants 2 Question 3

«««< HEAD

3. If Δ1=|xsinθcosθ sinθx1 cosθ1x| and Δ2=|xsin2θcos2θ sin2θx1 cos2θ1x|,x0, then for all θ0,π2

======= ####3. If Δ1=|xsinθcosθsinθx1cosθ1x| and Δ2=|xsin2θcos2θsin2θx1cos2θ1x|,x0, then for all θ0,π2

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed

(a) Δ1+Δ2=2(x3+x1)

(b) Δ1Δ2=2x3

(c) Δ1+Δ2=2x3

(d) Δ1Δ2=x(cos2θcos4θ)

(2019 Main, 10 April I)

Show Answer

Answer:

Correct Answer: 3. (c)

Solution:

  1. Given determinants are

Δ1=|xsinθcosθsinθx1cosθ1x|

=x3+sinθcosθsinθcosθ+xcos2θx+xsin2θ=x3 and Δ2=|xsin2θcos2θsin2θx1cos2θ1x|,x0=x3( similarly as Δ1)

So, according to options, we get Δ1+Δ2=2x3



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक