Matrices and Determinants 2 Question 25

«««< HEAD

28. The value of the determinant $\begin{array}{ccc}1 & a & a^{2}-b c \ 1 & b & b^{2}-c a \text { is … . } \ 1 & c & c^{2}-a b\end{array}$

======= ####28. The value of the determinant $\begin{vmatrix}1 & a & a^{2}-b c \\ 1 & b & b^{2}-c a \\ 1 & c & c^{2}-a b\end{vmatrix}$ is ….

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed

$(1988,2 M)$

Show Answer

Answer:

Correct Answer: 27. (0)

Solution:

  1. $\quad\begin{vmatrix}1 & a & a^{2}-b c \\ 1 & b & b^{2}-c a \\ 1 & c & c^{2}-a b\end{vmatrix}=\begin{vmatrix}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{vmatrix}-\begin{vmatrix}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{vmatrix}$

Now, $\quad\begin{vmatrix}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{vmatrix}=\frac{1}{a b c}\begin{vmatrix}a & a^{2} & a b c \\ b & b^{2} & a b c \\ c & c^{2} & a b c\end{vmatrix}$

Applying $R _1 \rightarrow a R _1, R _2 \rightarrow b R _2, R _3 \rightarrow c R _3$

$ \begin{aligned} & =\frac{1}{a b c} \cdot a b c\begin{vmatrix} a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1 \end{vmatrix}=\begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} \\ \therefore\begin{vmatrix} 1 & a & a^{2}-b c \\ 1 & b & b^{2}-c a \\ 1 & c & c^{2}-a b \end{vmatrix} & =0 \end{aligned} $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक