Matrices and Determinants 2 Question 22

24. Let M and N be two 3×3 matrices such that MN=NM. Further, if MN2 and M2=N4, then

(2014 Adv.)

(a) determinant of (M2+MN2) is 0

(b) there is a 3×3 non-zero matrix U such that (M2+MN2)U is zero matrix

(c) determinant of (M2+MN2)1

(d) for a 3×3 matrix U, if (M2+MN2)U equals the zero matrix, then U is the zero matrix

Show Answer

Answer:

Correct Answer: 24. (a, b)

Solution:

  1. PLAN: (i) If A and B are two non-zero matrices and AB=BA, then (AB)(A+B)=A2B2

(ii) The determinant of the product of the matrices is equal to product of their individual determinants, i.e. |AB|=|A||B|.

Given, M2=N4M2N4=0

(MN2)(M+N2)=0

[as MN=NM ]

Also, MN2

M+N2=0

det(M+N2)=0

Also, det(M2+MN2)=(detM)(detM+N2)

=(detM)(0)=0

As, det(M2+MN2)=0

Thus, there exists a non-zero matrix U such that

(M2+MN2)U=0



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक