Matrices and Determinants 2 Question 20
«««< HEAD
22. Which of the following is(are) NOT the square of a $3 \times 3$ matrix with real entries?
$\begin{array}{lll}1 & 0 & 0\end{array}$
####22. Which of the following is(are) NOT the square of a $3 \times 3$ matrix with real entries?
(a) $ \begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & -1\end{bmatrix}$
(b) $ \begin{bmatrix}1 & 0 & 0\\ 0 & -1 & 0 \\ 0 & 0 & -1\end{bmatrix}$
(c) $ \begin{bmatrix}-1 & 0 & 0\\ 0 & -1 & 0 \\ 0 & 0 & -1\end{bmatrix}$
(d) $ \begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}$
3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed
(2017 Adv.)
Show Answer
Answer:
Correct Answer: 22. (a,c)
Solution:
- For a matrix to be square of other matrix its determinant should be positive.
(a) and (c) $\rightarrow$ Correct
(b) and (d) $\rightarrow$ Incorrect