Matrices and Determinants 2 Question 16

«««< HEAD

18. If $f(x)=\begin{array}{ccc}1 & x & x+1 \ 2 x & x(x-1) & (x+1) x \ 3 x(x-1) & x(x-1)(x-2) & (x+1) x(x-1)\end{array}$,

======= ####18. If $f(x)=\begin{vmatrix}1 & x & x+1 \\ 2 x & x(x-1) & (x+1) x \\ 3 x(x-1) & x(x-1)(x-2) & (x+1) x(x-1)\end{vmatrix}$,

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed

then $f(100)$ is equal to

(1999, 2M)

(a) 0

(b) 1

(c) 100

(d) -100

Show Answer

Answer:

Correct Answer: 18. (a)

Solution:

  1. Given,

$ f(x)=\begin{vmatrix} 1 & x & x+1 \\ 2 x & x(x-1) & (x+1) x \\ 3 x(x-1) & x(x-1)(x-2) & (x+1) x(x-1) \end{vmatrix} $

Applying $C _3 \rightarrow C _3-\left(C _1+C _2\right)$

$ \begin{vmatrix} 1 & x & 0 \\ 2 x & x(x-1) & 0 \\ 3 x(x-1) & x(x-1)(x-2) & 0 \end{vmatrix} $

$ \therefore \quad f(x)=0 \Rightarrow f(100)=0 $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक