Matrices and Determinants 2 Question 14
«««< HEAD
16. If $A=\begin{array}{ll}\alpha & 2 \ 2 & \alpha\end{array}$ and $\left|A^{3}\right|=125$, then the value of $\alpha$ is
======= ####16. If $A=\begin{vmatrix}\alpha & 2 \\ 2 & \alpha\end{vmatrix}$ and $\left|A^{3}\right|=125$, then the value of $\alpha$ is
3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed
(a) $\pm 1$
(b) $\pm 2$
(c) $\pm 3$
(d) $\pm 5$
Show Answer
Answer:
Correct Answer: 16. (c)
Solution:
- We know, $\left|A^{n}\right|=|A|^{n}$
Since,
$ \left|A^{3}\right|=125 \Rightarrow|A|^{3}=125 $
$\Rightarrow \quad \begin{vmatrix}\alpha & 2 \\ 2 & \alpha\end{vmatrix}=5 \Rightarrow \alpha^{2}-4=5 \Rightarrow \alpha= \pm 3$