Matrices and Determinants 2 Question 14

«««< HEAD

16. If $A=\begin{array}{ll}\alpha & 2 \ 2 & \alpha\end{array}$ and $\left|A^{3}\right|=125$, then the value of $\alpha$ is

======= ####16. If $A=\begin{vmatrix}\alpha & 2 \\ 2 & \alpha\end{vmatrix}$ and $\left|A^{3}\right|=125$, then the value of $\alpha$ is

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed

(a) $\pm 1$

(b) $\pm 2$

(c) $\pm 3$

(d) $\pm 5$

Show Answer

Answer:

Correct Answer: 16. (c)

Solution:

  1. We know, $\left|A^{n}\right|=|A|^{n}$

Since,

$ \left|A^{3}\right|=125 \Rightarrow|A|^{3}=125 $

$\Rightarrow \quad \begin{vmatrix}\alpha & 2 \\ 2 & \alpha\end{vmatrix}=5 \Rightarrow \alpha^{2}-4=5 \Rightarrow \alpha= \pm 3$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक