Matrices and Determinants 2 Question 12

14. If α,β0 and f(n)=αn+βn and

|31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)|

=K(1α)2(1β)2(αβ)2, then K is equal to

(2014 Main)

(a) αβ

(b) 1αβ

(c) 1

(d) -1

Show Answer

Answer:

Correct Answer: 14. (c)

Solution:

  1. PLAN: Use the property that, two determinants can be multiplied column-to-row or row-to-column, to write the given determinant as the product of two determinants and then expand.

Given, f(n)=αn+βn,f(1)=α+β,f(2)=α2+β2,

f(3)=α3+β3,f(4)=α4+β4 Let Δ=|31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)|Δ=|31+α+β1+α2+β21+α+β1+α2+β21+α3+β31+α2+β21+α3+β31+α4+β4|

=|11+11+1111+1α+1β11+1α+1β11+αα+ββ11+1α2+1β211+α2α+β2β| |11+1α2+1β211+αα2+ββ211+α2α2+β2β2|

=|1111αβ1α2β2||1111αβ1α2β2|=|1111αβ1α2β2|2

On expanding, we get Δ=(1α)2(1β)2(αβ)2

 But given, Δ=K(1α)2(1β)2(αβ)2

Hence, K(1α)2(1β)2(αβ)2=(1α)2(1β)2(αβ)2

K=1



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक