Matrices and Determinants 2 Question 11

«««< HEAD

13. Let $\omega$ be a complex number such that $2 \omega+1=z$, where $z=\sqrt{-3}$. If $\left|\begin{array}{ccc}1 & 1 & 1 \ 1 & -\omega^{2}-1 & \omega^{2} \ 1 & \omega^{2} & \omega^{7}\end{array}\right|=3 k$, then $k$ is equal to

======= ####13. Let $\omega$ be a complex number such that $2 \omega+1=z$, where $z=\sqrt{-3}$. If $\begin{vmatrix}1 & 1 & 1 \\ 1 & -\omega^{2}-1 & \omega^{2} \\ 1 & \omega^{2} & \omega^{7}\end{vmatrix}=3 k$, then $k$ is equal to

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed

(a) $-z$

(b) $z$

(c) -1

(d) 1

(2017 Main)

Show Answer

Answer:

Correct Answer: 13. (a)

Solution:

  1. Given, $2 \omega+1=z$

$ \begin{aligned} \Rightarrow & 2 \omega+1 =\sqrt{-3} & {[\because z=\sqrt{-3}] } \\ \Rightarrow & \omega =\frac{-1+\sqrt{3} i}{2} & \end{aligned} $

Since, $\omega$ is cube root of unity.

$\therefore \quad \omega^{2}=\frac{-1-\sqrt{3} i}{2}$ and $\omega^{3 n}=1$

Now, $\begin{vmatrix}1 & 1 & 1 \\ 1 & -\omega^{2}-1 & \omega^{2} \\ 1 & \omega^{2} & \omega^{7}\end{vmatrix}=3 k$

$ \Rightarrow \quad\begin{vmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega \end{vmatrix}=3 k $

$ \left[\because 1+\omega+\omega^{2}=0 \text { and } \omega^{7}=\left(\omega^{3}\right)^{2} \cdot \omega=\omega\right] $

On applying $R _1 \rightarrow R _1+R _2+R _3$, we get

$ \begin{vmatrix} 3 & 1+\omega+\omega^{2} & 1+\omega+\omega^{2} \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega \end{vmatrix}=3 k $

$\Rightarrow $ $ \begin{vmatrix} 3 & 0 & 0 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega \end{vmatrix}=3 k $

$\Rightarrow 3\left(\omega^{2}-\omega^{4}\right)=3 k $

$\Rightarrow \left(\omega^{2}-\omega\right)=k $

$\therefore k=\frac{-1-\sqrt{3} i}{2}-\frac{-1+\sqrt{3} i}{2}=-\sqrt{3} i=-z $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक