Matrices and Determinants 2 Question 11

«««< HEAD

13. Let ω be a complex number such that 2ω+1=z, where z=3. If |111 1ω21ω2 1ω2ω7|=3k, then k is equal to

======= ####13. Let ω be a complex number such that 2ω+1=z, where z=3. If |1111ω21ω21ω2ω7|=3k, then k is equal to

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed

(a) z

(b) z

(c) -1

(d) 1

(2017 Main)

Show Answer

Answer:

Correct Answer: 13. (a)

Solution:

  1. Given, 2ω+1=z

2ω+1=3[z=3]ω=1+3i2

Since, ω is cube root of unity.

ω2=13i2 and ω3n=1

Now, |1111ω21ω21ω2ω7|=3k

|1111ωω21ω2ω|=3k

[1+ω+ω2=0 and ω7=(ω3)2ω=ω]

On applying R1R1+R2+R3, we get

|31+ω+ω21+ω+ω21ωω21ω2ω|=3k

|3001ωω21ω2ω|=3k

3(ω2ω4)=3k

(ω2ω)=k

k=13i21+3i2=3i=z



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक