Matrices and Determinants 1 Question 6
«««< HEAD
6. Let $P=\begin{array}{rrr}1 & 0 & 0 \ 4 & 1 & 0\end{array}$ and $I$ be the identity matrix of order 3 . $\begin{array}{lll}16 & 4 & 1\end{array}$ If $Q=\left[q _{i j}\right]$ is a matrix, such that $P^{50}-Q=I$, then $\frac{q _{31}+q _{32}}{q _{21}}$ equals
======= ####6. Let $P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]$ and $I$ be the identity matrix of order 3 . If $Q=\left[q _{i j}\right]$ is a matrix, such that $P^{50}-Q=I$, then $\frac{q _{31}+q _{32}}{q _{21}}$ equals
3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed
(2016 Adv.)
(a) 52
(b) 103
(c) 201
(d) 205
Show Answer
Answer:
Correct Answer: 6. (b)
Solution:
- Here,
$P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]$
$ \begin{aligned} \therefore \quad P^2 & =\left[\begin{array}{ccc} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 4+4 & 1 & 0 \\ 16+32 & 4+4 & 1 \end{array}\right] \\ & =\left[\begin{array}{ccc} 1 & 0 & 0 \\ 4 \times 2 & 1 & 0 \\ 16(1+2) & 4 \times 2 & 1 \end{array}\right] \\ \text { and } P^3 & =\left[\begin{array}{ccc} 1 & 0 & 0 \\ 4 \times 2 & 1 & 0 \\ 16(1+2) & 4 \times 2 & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{array}\right] \\ & =\left[\begin{array}{ccc} 1 & 0 & 0 \\ 4 \times 3 & 1 & 0 \\ 16(1+2+3) & 4 \times 3 & 1 \end{array}\right] \end{aligned} $
From symmetry,
$ \begin{aligned} & P^{50}=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 4 \times 50 & 1 & 0 \\ 16(1+2+3+\ldots+50) & 4 \times 50 & 1 \end{array}\right] \\ & \because \quad P^{50}-Q=I \\ & \text { [given] } \\ & \therefore\left[\begin{array}{ccc} 1-q _{11} & -q _{12} & -q _{13} \\ 200-q _{21} & 1-q _{22} & -q _{23} \\ 16 \times \frac{50}{2}(51)-q _{31} & 200-q _{32} & 1-q _{33} \end{array}\right]=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ & \Rightarrow \quad 200-q _{21}=0, \frac{16 \times 50 \times 51}{2}-q _{31}=0 \text {, } \\ & 200-q _{32}=0 \\ & \therefore \quad q _{21}=200, q _{32}=200, q _{31}=20400 \\ & \end{aligned} $
$\text { Thus, } \quad \frac{q _{31}+q _{32}}{q _{21}}=\frac{20400+200}{200}=\frac{20600}{200}=103$