Matrices and Determinants 1 Question 20

«««< HEAD

20. If matrix A=abc bca cab, where a,b,c are real positive numbers, abc=1 and ATA=I, then find the value of a3+b3+c3.

======= Analytical and Descriptive Questions

####20. If matrix A=[abcbcacab], where a,b,c are real positive numbers, abc=1 and ATA=I, then find the value of a3+b3+c3.

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed

(2003,2M)

Integer Type Question

Show Answer

Answer:

Correct Answer: 20. (4)

Solution:

  1. Given, A=[abcbcacab],abc=1 and ATA=I …(i)

Now, ATA=I

[abcbcacab] [abcbcacab] =[100010001]

[a2+b2+c2ab+bc+caab+bc+ca] [ab+bc+caa2+b2+c2ab+bc+ca] [ab+bc+caab+bc+caa2+b2+c2]

=[100010001]

a2+b2+c2=1 and ab+bc+ca=0…(ii)

We know, a3+b3+c33abc

=(a+b+c)(a2+b2+c2abbcca)

a3+b3+c3=(a+b+c)(10)+3

[from Eqs. (i) and (ii)]

a3+b3+c3=(a+b+c)+3…(iii)

Now, (a+b+c)2=a2+b2+c2+2(ab+bc+ca)

=1

From Eq. (iii), a3+b3+c3=1+3a3+b3+c3=4



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक