Matrices and Determinants 1 Question 16

16. Let $\omega$ be a solution of $x^{3}-1=0$ with $\operatorname{Im}(\omega)>0$. If $a=2$ with $b$ and $c$ satisfying Eq. (i) then the value of $\frac{3}{\omega^{a}}+\frac{1}{\omega^{b}}+\frac{3}{\omega^{c}}$ is

(a) -2

(b) 2

(c) 3

(d) -3

Show Answer

Answer:

Correct Answer: 16. (a)

Solution:

  1. If $a=2, b=12, c=-14$

$\therefore \frac{3}{\omega^{a}}+\frac{1}{\omega^{b}}+\frac{3}{\omega^{c}}$

$\Rightarrow \frac{3}{\omega^{2}}+\frac{1}{\omega^{12}}+\frac{3}{\omega^{-14}}=\frac{3}{\omega^{2}}+1+3 \omega^{2}=3 \omega+1+3 \omega^{2}$

$ =1+3\left(\omega+\omega^{2}\right)=1-3=-2 $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक