Matrices and Determinants 1 Question 1

«««< HEAD

1. If $A$ is a symmetric matrix and $B$ is a skew-symmetric matrix such that $A+B=\begin{array}{cc}2 & 3 \ 5 & -1\end{array}$, then $A B$ is equal to

======= ####1. If $A$ is a symmetric matrix and $B$ is a skew-symmetric matrix such that $A+B=\begin{bmatrix}2 & 3 \\ 5 & -1\end{bmatrix}$, then $A B$ is equal to

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed

(a) $\begin{bmatrix}-4 & -2 \\ -1 & 4\end{bmatrix}$

(b) $\begin{bmatrix}4 & -2 \\ -1 & -4\end{bmatrix}$

(c) $\begin{bmatrix}4 & -2 \\ 1 & -4\end{bmatrix}$

(d) $\begin{bmatrix}-4 & 2 \\ 1 & 4\end{bmatrix}$

(2019 Main, 12 April I)

Show Answer

Answer:

Correct Answer: 1. (b)

Solution:

  1. Given matrix $A$ is a symmetric and matrix $B$ is a skew-symmetric.

$\therefore \quad A^{T}=A$ and $B^{T}=-B$

Since, $A+B=\begin{bmatrix}2 & 3 \\ 5 & -1\end{bmatrix}$ (given)… (i)

On taking transpose both sides, we get

$ \begin{aligned} (A+B)^{T}& =\begin{bmatrix} 2 & 3\\\ 5 & -1 \end{bmatrix} \\\ \Rightarrow \quad A^{T}+B^{T}& =\begin{bmatrix} 2 & 5 \\\ 3 & -1 \end{bmatrix} \end{aligned} $

Given, $A^{T}=A$ and $B^{T}=-B$

$ \Rightarrow \quad A-B=\begin{bmatrix} 2 & 5 \\\ 3 & -1 \end{bmatrix} $

On solving Eqs. (i) and (ii), we get

$ \begin{aligned} A & =\begin{bmatrix} 2 & 4 \\\ 4 & -1 \end{bmatrix} \text { and } B=\begin{bmatrix} 0 & -1 \\\ 1 & 0 \end{bmatrix} \\\ \text { So, } A B & =\begin{bmatrix} 2 & 4 & 0 & -1 \\\ 4 & -1 & 1 & 0 \end{bmatrix}=\begin{bmatrix} 4 & -2 \\\ -1 & -4 \end{bmatrix} \end{aligned} $



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक