Limit Continuity and Differentiability 7 Question 36

37. Let h(x)=minx,x2 for every real number of x, then

(a) h is continuous for all x

(1998, 2M)

(b) h is differentiable for all x

(c) h(x)=1,x>1

(d) h is not differentiable at two values of x

Show Answer

Answer:

Correct Answer: 37. (1,2)

Solution:

  1. Here, limx1F(x)G(x)=114

limx1F(x)G(x)=114 [using L’Hospital’s rule]…(i)

As F(x)=1xf(t)dtF(x)=f(x)

and G(x)=1xt|ff(t)|dt

G(x)=x|ff(x)|

limx1F(x)G(x)=limx1F(x)G(x)=limx1f(x)x|ff(x)|

=f(1)1|ff(1)|=1/2|f(1/2)|

Given, limx1F(x)G(x)=114

12|f12|=114|f12|=7 Download Chapter Test http://tinyurl.com/y6dl84lx

10



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक