Limit Continuity and Differentiability 4 Question 7

7. Let $[x]$ be the greatest integer less than or equals to $x$. Then, at which of the following point(s) the function $f(x)=x \cos (\pi(x+[x]))$ is discontinuous? $\quad$ (2017 Adv.)

(a) $x=-1$

(b) $x=1$

(c) $x=0$

(d) $x=2$

Show Answer

Answer:

Correct Answer: 7. $(a, b, d)$

Solution:

  1. Given, $f(x)=\frac{1}{2} x-1$ for $0 \leq x \leq \pi$

$$ \begin{aligned} & \therefore \quad[f(x)]=\begin{array}{cc} -1, & 0 \leq x<2 \\ 0, & 2 \leq x \leq \pi \end{array} \\ & \Rightarrow \quad \tan [f(x)]=\begin{array}{cc} \tan (-1), & 0 \leq x<2 \\ \tan 0, & 2 \leq x \leq \pi \end{array} \\ & \therefore \quad \lim _{x \rightarrow 2^{-}} \tan [f(x)]=-\tan 1 \end{aligned} $$

and $\quad \lim _{x \rightarrow 2^{+}} \tan [f(x)]=0$

So, $\tan f(x)$ is not continuous at $x=2$.

Now, $f(x)=\frac{1}{2} x-1 \Rightarrow f(x)=\frac{x-2}{2} \Rightarrow \frac{1}{f(x)}=\frac{2}{x-2}$

Clearly, $1 / f(x)$ is not continuous at $x=2$.

So, $\tan [f(x)]$ and $\frac{1}{f(x)}$ are both discontinuous at $x=2$.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक