Limit Continuity and Differentiability 2 Question 6

6. For each $t \in \mathbf{R}$, let $[t]$ be the greatest integer less than or equal to $t$. Then,

$$ \lim _{x \rightarrow 0^{+}} x \frac{1}{x}+\frac{2}{x}+\ldots+\frac{15}{x} $$

(2018 Main)

(a) is equal to 0

(b) is equal to 15

(c) is equal to 120

(d) does not exist (in $\mathbf{R}$ )

Show Answer

Answer:

Correct Answer: 6. (b)

Solution:

  1. $\lim _{x \rightarrow 0} \frac{\int _0^{x^{2}} \cos ^{2} t d t}{x \sin x}$

$\frac{0}{0}$ form

Applying L’Hospital’s rule, we get

$$ =\lim _{x \rightarrow 0} \frac{\cos ^{2}\left(x^{2}\right) \cdot 2 x-0}{x \cos x+\sin x}=\lim _{x \rightarrow 0} \frac{2 \cdot \cos ^{2}\left(x^{2}\right)}{\cos x+\frac{\sin x}{x}}=\frac{2}{1+1}=1 $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक