Limit Continuity and Differentiability 1 Question 2

3. If limx1x41x1=limxkx3k3x2k2, then k is

(a) 43

(b) 38

(c) 32

(2019 Main, 10 April I)

Show Answer

Answer:

Correct Answer: 3. (d)

Solution:

Key Idea limxaf(x) exist iff

limxa+f(x)=limxaf(x)

At x=0,

 RHL =limx0+tan(πsin2x)+(|x|sin(x[x]))2x2 =limx0+tan(πsin2x)+(xsin(x0))2x2

|x|=x for x>0 and [x]=0 for 0<x<1

=limx0+tan(πsin2x)+x2x2=limx0+tan(πsin2x)πsin2xπsin2xx2+1

=πlimx0+tan(πsin2x)πsin2xlimx0+sin2xx2+1=π+1limx0tanxx=1 and limx0sinxx=1

and LHL

=limx0tan(πsin2x)+(|x|sin(x[x])2x2=limx0tan(πsin2x)+(xsin(x(1))2x2|x|=x for x<0 and [x]=1 for 1<x<0=limx0tan(πsin2x)+(x+sin(x))2x2=limx0tan(πsin2x)+(xsinx)2x2[sin(θ)=sinθ]=limx0tan(πsin2x)+x2+sin2x2xsinxx2=limx0tan(πsin2x)x2+1+sin2xx22xsinxx2=limx0tan(πsin2x)πsin2xπsin2xx2+1+sin2xx22sinxx=limx0tan(πsin2x)πsin2xlimx0πsin2xx2+1+limx0sin2xx22limx0sinxx=π+1+12=π

RHL LHL

Limit does not exist



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक