Limit Continuity and Differentiability 1 Question 15

17. The value of $\lim _{x \rightarrow 0} \frac{\sqrt{\frac{1}{2}\left(1-\cos ^{2} x\right)}}{x}$ is

(1991, 2M)

(a) 1

(b) -1

(c) 0

(d) None of these

Show Answer

Answer:

Correct Answer: 17. (d)

Solution:

  1. PLAN $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

Given, $\lim _{x \rightarrow 1} \frac{\sin (x-1)+a(1-x)}{(x-1)+\sin (x-1)} \frac{(1+\sqrt{x})(1-\sqrt{x})}{1-\sqrt{x}}=\frac{1}{4}$

$$ \begin{array}{ll} & \lim _{x \rightarrow 1} \frac{\frac{\sin (x-1)}{(x-1)}-a}{1+\frac{\sin (x-1)}{(x-1)}}=\frac{1}{4} \\ \Rightarrow \quad & \frac{1-a^{2}}{2}=\frac{1}{4} \Rightarrow(a-1)^{2}=1 \\ \Rightarrow \quad & a=2 \text { or } 0 \end{array} $$

Hence, the maximum value of $a$ is 2 .



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक