Inverse Circular Functions 3 Question 9

9. The value of $\tan \cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{2}{3}$ is

(1983, 1M)

(a) $\frac{6}{17}$

(b) $\frac{17}{6}$

(c) $\frac{16}{7}$

(d) None of these

Fill in the Blanks

Show Answer

Answer:

Correct Answer: 9. (b)

Solution:

  1. $\tan \cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{2}{3}=\tan \tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}$

$$ \because \cos ^{-1} \frac{4}{5}=\tan ^{-1} \frac{3}{4} $$

$$ =\tan \tan ^{-1} \frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \cdot \frac{2}{3}}=\tan \tan ^{-1} \frac{17}{6}=\frac{17}{6} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक