Inverse Circular Functions 3 Question 12

12. Solve the following equation for $x$.

$$ \tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4} $$

(1978, 3M)

Show Answer

Answer:

Correct Answer: 12. $x=\frac{1}{6}$

Solution:

  1. Given, $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$

$$ \begin{aligned} & \Rightarrow \quad \tan ^{-1} \frac{2 x+3 x}{1-6 x^{2}}=\frac{\pi}{4} \\ & \Rightarrow \quad \frac{5 x}{1-6 x^{2}}=1 \end{aligned} $$

$$ \Rightarrow \quad 6 x^{2}+5 x-1=0 $$

$$ \Rightarrow \quad(x+1)(6 x-1)=0 $$

$\Rightarrow$

$$ x=-1 \text { or } \frac{1}{6} $$

But $x=-1$ does not satisfy the given equation.

$\therefore$ We take $x=\frac{1}{6}$

Download Chapter Test

http://tinyurl.com/y5bu7cjl or

23



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक