Inverse Circular Functions 2 Question 9

9. Match List I with List II and select the correct answer using the code given below the lists.

List I List II
P. $\frac{1}{y^{2}} \frac{\cos \left(\tan ^{-1} y\right)+y \sin \left(\tan ^{-1} y\right)^{2}}{\cot \left(\sin ^{-1} y\right)+\tan \left(\sin ^{-1} y\right)}+y^{4} \quad$ takes value 1. $\frac{1}{2} \sqrt{\frac{5}{3}}$
Q. If $\cos x+\cos y+\cos z=0=\sin x+\sin y+\sin z$, then 2. $\sqrt{2}$
possible value of $\cos \frac{x-y}{2}$ is
R. If $\cos \frac{\pi}{4}-x \cos 2 x+\sin x \sin 2 x \sec x$
$=\cos x \sin 2 x \sec x+\cos \frac{\pi}{4}+x \cos 2 x$, then
possible value of $\sec x$ is
S. If $\cot \left(\sin ^{-1} \sqrt{1-x^{2}}\right)=\sin \left[\tan ^{-1}(x \sqrt{6})\right]$,
$x=0$. Then, possible value of $x$ is

Codes

P Q R S
(a) 4 3 1 2
(b) 4 3 2 1
(c) 3 4 2 1
(d) 3 4 1 2
Show Answer

Answer:

Correct Answer: 9. (a)

Solution:

  1. P. Here, innermost function is inverse.

$\therefore$ Put $\tan ^{-1} y=\theta \Rightarrow \tan \theta=y$

$$ \frac{1}{y^{2}} \cdot \frac{\cos \left(\tan ^{-1} y\right)+y \sin \left(\tan ^{-1} y\right)}{\cot \left(\sin ^{-1} y\right)+\tan \left(\sin ^{-1} y\right)}+y^{4} $$

$=\frac{1}{y^{2}} \frac{\frac{1}{\sqrt{1+y^{2}}}+\frac{y^{2}}{\sqrt{1+y^{2}}}}{\frac{\sqrt{1-y^{2}}}{y}+\frac{y}{\sqrt{1-y^{2}}}}+y^{4}$

$=\frac{1}{y^{2}} \cdot y^{2}\left(1-y^{4}\right)+y^{4}{ }^{1 / 2}=1$

Q. Given,

$\cos x+\cos y=-\cos z$

and

$\sin x+\sin y=-\sin z$

On squaring and adding, we get

$\cos ^{2} x+\sin ^{2} x+\cos ^{2} y+\sin ^{2} y+2 \cos x \cos y$

$+2 \sin x \sin y=1$

$\Rightarrow \quad 2+2[\cos (x-y)]=1 \quad \Rightarrow \quad \cos (x-y)=-\frac{1}{2}$

$\Rightarrow 2 \cos ^{2} \frac{x-y}{2}-1=-\frac{1}{2}$

$\Rightarrow \quad 2 \cos ^{2} \frac{x-y}{2}=\frac{1}{2}$

$\Rightarrow \quad \cos \frac{x-y}{2}=\frac{1}{2}$ R. $\cos 2 x \cdot \cos \frac{\pi}{4}-x-\cos \frac{\pi}{4}+x+2 \sin ^{2} x$

$=2 \sin x \cdot \cos x$

$\Rightarrow \quad \cos 2 x \cdot(\sqrt{2} \sin x)+2 \sin ^{2} x=2 \sin x \cdot \cos x$

$\Rightarrow \quad \sqrt{2} \sin x[\cos 2 x+\sqrt{2} \sin x-\sqrt{2} \cos x]=0$

$\Rightarrow \quad \sin x=0,(\cos x-\sin x)(\cos x+\sin x-\sqrt{2})=0$

$\Rightarrow \quad \sec x=1$ or $\tan x=1$

$\Rightarrow \quad \sec x=1$ or $\sqrt{2}$ S. $\cot \left(\sin ^{-1} \sqrt{1-x^{2}}\right)=\sin \left(\tan ^{-1}(x \sqrt{6})\right)$

$$ \begin{aligned} & \Rightarrow \quad \frac{x}{\sqrt{1-x^{2}}}=\frac{x \sqrt{6}}{\sqrt{1+6 x^{2}}} \\ & \Rightarrow \quad 1+6 x^{2}=6-6 x^{2} \\ & \Rightarrow \quad 12 x^{2}=5 \quad \Rightarrow \quad x=\sqrt{\frac{5}{12}}=\frac{\sqrt{5}}{2 \sqrt{3}} \end{aligned} $$

$(P) \rightarrow 4,(Q) \rightarrow 3,(R) \rightarrow 2$ or $4,(S) \rightarrow 1$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक