Inverse Circular Functions 2 Question 12

12. The number of real solutions of the equation sin1i=1xi+1xi=1x2

=π2cos1i=1xi2i=1(x)i lying in the interval

12,12 is 

(Here, the inverse trigonometric functions sin1x and cos1x assume values in π2,π2 and [0,π], respectively.)

(2018 Adv.)

Analytical & Descriptive Question

Show Answer

Answer:

Correct Answer: 12. (2)

Solution:

  1. We have,

sin1i=1xi+1xi=1xi2=π2cos1i=1xi2i=1(x)isin1x21xxx21x2=π2cos1x21+x2(x)1+xi=1xi+1=x2+x3+x4+=x21x

using sum of infinite terms of GP

sin1x21xx22x=π2cos1x1+xx2+x

sin1x21xx22x=sin1x1+xx2+x

sin1x=π2cos1xx22x1+x(1x)(2x)=xx2(1+x)(2+x)=x1+xx2+xx23x+x2=12+3x+x2 or x=0x3+3x2+2x=x23x+2x3+2x2+5x2=0 or x=0

Let f(x)=x3+2x2+5x2

f(x)=3x2+4x+5

f(x)>0,xR

x3+2x2+5x2 has only one real roots

Therefore, total number of real solution is 2 .



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक