Inverse Circular Functions 2 Question 11

11. Let Missing \left or extra \right and E2=xE1:sin1logexx1 is a real number

(Here, the inverse trigonometric function sin1x assumes values in π2,π2 ). Let f:E1R be the function defined by f(x)=logexx1 and g:E2R be the function defined by g(x)=sin1logexx1.

(2018 Adv.)

List I List II
P. The range of f is 1. ,11eee1,
Q. The range of g contains 2. (0,1)
The domain of f
contains
3. 12,12
S. The domain of g is 4. (,0)(0,)
5. ,ee1

The correct option is

(a) P4;Q2;R1;S1

(b) P3;Q3;R6;S5

(c) P4;Q2;R1;S6

(d) P4;Q3;R6;S5

Numerical Value Based

Show Answer

Answer:

Correct Answer: 11. (c)

Solution:

  1. We have,

E1=xR:x1 and xx1>0E1=xx1>0E1=x(,0)(1,)

and

E2=xE1:sin1logexx1 is a real number

E2=1logexx11

e1xx1e

Now, xx1e1xx11e0

exx+1e(x1)0x(e1)+1(x1)e0

x,11e(1,)

Also,

(e1)xex10

x(,1)ee1,

So, E2=,11eee1,

The domain of f and g are

,11eee1,

and Range of xx1 is R+1

Range of f is R0 or (,0)(0,)

Range of g is π2,π20 or π2,00,π2

Now, P4,Q2,R1,S1



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक