Inverse Circular Functions 1 Question 1

1. The number of real solutions of

$$ \tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^{2}+x+1}=\frac{\pi}{2} \text { is } $$

(a) zero

(b) one

(c) two

(d) infinite

Fill in the Blank

Show Answer

Answer:

Correct Answer: 1. (c)

Solution:

  1. Given function is

$$ \tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^{2}+x+1}=\frac{\pi}{2} $$

Function is defined, if

(i) $x(x+1) \geq 0$, since domain of square root function.

(ii) $x^{2}+x+1 \geq 0$, since domain of square root function.

(iii) $\sqrt{x^{2}+x+1} \leq 1$, since domain of $\sin ^{-1}$ function.

From (ii) and (iii), $0 \leq x^{2}+x+1 \leq 1 \cap x^{2}+x \geq 0$

$\Rightarrow$ $0 \leq x^{2}+x+1 \leq 1 \cap x^{2}+x+1 \geq 1$
$\Rightarrow$ $x^{2}+x+1=1$
$\Rightarrow$ $x^{2}+x=0$
$\Rightarrow$ $x(x+1)=0$
$\Rightarrow$ $x=0, x=-1$


जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक