Indefinite Integration 3 Question 9

9. Let $f(x)=\int _1^{x} \sqrt{2-t^{2}} d t$. Then, the real roots of the equation $x^{2}-f^{\prime}(x)=0$ are

(a) \pm 1

(b) $\pm \frac{1}{\sqrt{2}}$

(c) $\pm \frac{1}{2}$

(d) 0 and 1

Show Answer

Answer:

Correct Answer: 9. (a)

Solution:

  1. Given, $f(x)=\int _1^{x} \sqrt{2-t^{2}} d t \Rightarrow f^{\prime}(x)=\sqrt{2-x^{2}}$

Also, $x^{2}-f^{\prime}(x)=0$

$$ \begin{array}{rlrl} & \therefore & x^{2}=\sqrt{2-x^{2}} \quad \Rightarrow \quad x^{4}=2-x^{2} \\ & \Rightarrow & x^{4}+x^{2}-2 & =0 \Rightarrow x= \pm 1 \end{array} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक