Indefinite Integration 3 Question 15

15. Consider the statements

$P$ : There exists some $x \in R$ such that,

$$ f(x)+2 x=2\left(1+x^{2}\right) $$

$Q$ : There exists some $x \in R$ such that, $2 f(x)+1=2 x(1+x)$.

Then,

(a) both $P$ and $Q$ are true

(b) $P$ is true and $Q$ is false

(c) $P$ is false and $Q$ is true

(d) both $P$ and $Q$ are false

Show Answer

Answer:

Correct Answer: 15. (c)

Solution:

  1. Here, $f(x)+2 x=(1-x)^{2} \cdot \sin ^{2} x+x^{2}+2 x$

where, $P: f(x)+2 x=2(1+x)^{2}$

$$ \begin{array}{ll} \therefore & 2\left(1+x^{2}\right)=(1-x)^{2} \sin ^{2} x+x^{2}+2 x \\ \Rightarrow & (1-x)^{2} \sin ^{2} x=x^{2}-2 x+2 \\ \Rightarrow & (1-x)^{2} \sin ^{2} x=(1-x)^{2}+1 \\ \Rightarrow & (1-x)^{2} \cos ^{2} x=-1 \end{array} $$

which is never possible.

$\therefore P$ is false.

Again, let $Q: h(x)=2 f(x)+1-2 x(1+x)$

where, $\quad h(0)=2 f(0)+1-0=1$

$$ h(1)=2 f(1)+1-4=-3 \text {, as } h(0) h(1)<0 $$

$\Rightarrow h(x)$ must have a solution.

$\therefore Q$ is true.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक