Indefinite Integration 1 Question 62
63. The integral $\int _0^{1.5}\left[x^{2}\right] d x$, where [.] denotes the greatest function, equals
$(1988,2 M)$
Match the Columns
Show Answer
Solution:
- $\int _0^{1.5}\left[x^{2}\right] d x=\int _0^{1} 0 d x+\int _1^{\sqrt{2}} 1 d x+\int _{\sqrt{2}}^{1.5} 2 d x$
$$ \begin{aligned} & =0+[x] _1^{\sqrt{2}}+2[x] _{\sqrt{2}}^{1.5} \\ & =(\sqrt{2}-1)+2(1.5-\sqrt{2}) \\ & =\sqrt{2}-1+3-2 \sqrt{2} \\ & =2-\sqrt{2} \end{aligned} $$