Indefinite Integration 1 Question 51
52. The value(s) of $\int _0^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x$ is (are)
(2010)
(a) $\frac{22}{7}-\pi$
(b) $\frac{2}{105}$
(c) 0
(d) $\frac{71}{15}-\frac{3 \pi}{2}$
Show Answer
Solution:
- Let $I=\int _0^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x=\int _0^{1} \frac{\left(x^{4}-1\right)(1-x)^{4}+(1-x)^{4}}{\left(1+x^{2}\right)} d x$
$$ \begin{aligned} & =\int _0^{1}\left(x^{2}-1\right)(1-x)^{4} d x+\int _0^{1} \frac{\left(1+x^{2}-2 x\right)^{2}}{\left(1+x^{2}\right)} d x \\ & =\int _0^{1}\left(x^{2}-1\right)(1-x)^{4}+\left(1+x^{2}\right)-4 x+\frac{4 x^{2}}{\left(1+x^{2}\right)} d x \\ & =\int _0^{1}\left(x^{2}-1\right)(1-x)^{4}+\left(1+x^{2}\right)-4 x+4-\frac{4}{1+x^{2}} d x \\ & =\int _0^{1} x^{6}-4 x^{5}+5 x^{4}-4 x^{2}+4-\frac{4}{1+x^{2}} d x \\ & =\frac{x^{7}}{7}-\frac{4 x^{6}}{6}+\frac{5 x^{5}}{5}-\frac{4 x^{3}}{3}+4 x-4 \tan ^{-1} x \\ & =\frac{1}{7}-\frac{4}{6}+\frac{5}{5}-\frac{4}{3}+4-4 \frac{\pi}{4}-0=\frac{22}{7}-\pi \end{aligned} $$