Indefinite Integration 1 Question 48

49. Let $f(x)=7 \tan ^{8} x+7 \tan ^{6} x-3 \tan ^{4} x-3 \tan ^{2} x$ for all $x \in-\frac{\pi}{2}, \frac{\pi}{2}$. Then, the correct expression(s) is/are

(a) $\int _0^{\pi / 4} x f(x) d x=\frac{1}{12}$

(b) $\int _0^{\pi / 4} f(x) d x=0$

(c) $\int _0^{\pi / 4} x f(x) d x=\frac{1}{6}$

(d) $\int _0^{\pi / 4} f(x) d x=1$

(2015 Adv.)

Show Answer

Solution:

  1. Here, $f(x)=7 \tan ^{8} x+7 \tan ^{6} x-3 \tan ^{4} x-3 \tan ^{2} x$ for all $x \in \frac{-\pi}{2}, \frac{\pi}{2}$

$$ \begin{aligned} \therefore \quad f(x) & =7 \tan ^{6} x \sec ^{2} x-3 \tan ^{2} x \sec ^{2} x \\ & =\left(7 \tan ^{6} x-3 \tan ^{2} x\right) \sec ^{2} x \end{aligned} $$

Now, $\int _0^{\pi / 4} x f(x) d x=\int _0^{\pi / 4} x\left(7 \tan ^{6} x-3 \tan ^{2} x\right) \sec ^{2} x d x$

$$ =\left[x\left(\tan ^{7} x-\tan ^{3} x\right)\right] _0^{\pi / 4} $$

$-\int _0^{\pi / 4} 1\left(\tan ^{7} x-\tan ^{3} x\right) d x$

$$ \begin{aligned} & =0-\int _0^{\pi / 4} \tan ^{3} x\left(\tan ^{4} x-1\right) d x \\ & =-\int _0^{\pi / 4} \tan ^{3} x\left(\tan ^{2} x-1\right) \sec ^{2} x d x \end{aligned} $$

Put $\tan x=t \Rightarrow \sec ^{2} x d x=d t$

$\therefore \int _0^{\pi / 4} x f(x) d x=-\int _0^{1} t^{3}\left(t^{2}-1\right) d t$

$$ =\int _0^{1}\left(t^{3}-t^{5}\right) d t=\frac{t^{4}}{4}-{\frac{t^{5}}{5}} _0^{1}=\frac{1}{4}-\frac{1}{6}=\frac{1}{12} $$

Also, $\int _0^{\pi / 4} f(x) d x=\int _0^{\pi / 4}\left(7 \tan ^{6} x-3 \tan ^{2} x\right) \sec ^{2} x d x$

$$ =\int _0^{1}\left(7 t^{6}-3 t^{2}\right) d t=\left[t^{7}-t^{3}\right] _0^{1}=0 $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक