Indefinite Integration 1 Question 46
47. Let $f: R \rightarrow(0,1)$ be a continuous function. Then, which of the following function(s) has (have) the value zero at some point in the interval $(0,1)$ ?
(2017 Adv.)
(a) $e^{x}-\int _0^{x} f(t) \sin t d t$
(b) $f(x)+\int _0^{\frac{\pi}{2}} f(t) \sin t d t$
(c) $x-\int _0 f(t) \cos t d t$
(d) $x^{9}-f(x)$
Show Answer
Solution:
- $\because e^{x} \in(1, e)$ in $(0,1)$ and $\int _0^{x} f(t) \sin t d t \in(0,1)$ in $(0,1)$
$\therefore e^{x}-\int _0^{x} f(t) \sin t d t$ cannot be zero.
So, option (a) is incorrect. (b) $f(x)+\int _0^{\frac{\pi}{2}} f(t) \sin t d t$ always positive
$\therefore$ Option (b) is incorrect.
(c) Let $h(x)=x-\int _0^{2} f(t) \cos t d t$,
$$ \begin{aligned} & h(0)=-\int _0^{\frac{\pi}{2}} f(t) \cos t d t<0 \\ & h(1)=1-\int _0^{\frac{\pi}{2}-1} f(t) \cos t d t>0 \end{aligned} $$
$\therefore$ Option (c) is correct.
(d) Let $g(x)=x^{9}-f(x)$
$g(0)=-f(0)<0$
$g(1)=1-f(1)>0$
$\therefore$ Option (d) is correct.