Indefinite Integration 1 Question 43

44. If $\lim _{t \rightarrow a} \frac{\int _a^{t} f(x) d x-\frac{(t-a)}{2}{f(t)+f(a)}}{(t-a)^{3}}=0$,

then degree of polynomial function $f(x)$ atmost is

(a) 0

(b) 1

(c) 3

(d) 2

Show Answer

Solution:

  1. Given, $\lim _{t \rightarrow a} \frac{\int _a^{t} f(x) d x-\frac{(t-a)}{2}{f(t)+f(a)}}{(t-a)^{3}}=0$

Using L’Hospital’s rule, put $t-a=h$

$$ \begin{array}{ll} \Rightarrow \quad \lim _{h \rightarrow 0} \frac{\int _a^{a+h} f(x) d x-\frac{h}{2}{f(a+h)+f(a)}}{h^{3}} & =0 \\ \Rightarrow \quad \lim _{h \rightarrow 0} \frac{f(a+h)-\frac{1}{2}{f(a+h)+f(a)}-\frac{h}{2}{f^{\prime}(a+h) }}{3 h^{2}} & =0 \end{array} $$

Again, using L’ Hospital’s rule,

$\lim _{h \rightarrow 0} \frac{f^{\prime}(a+h)-\frac{1}{2} f^{\prime}(a+h)-\frac{1}{2} f^{\prime}(a+h)-\frac{h}{2} f^{\prime \prime}(a+h)}{6 h}=0$

$$ \begin{aligned} \Rightarrow & & \lim _{h \rightarrow 0} \frac{-\frac{h}{2} f^{\prime \prime}(a+h)}{6 h} & =0 \\ \Rightarrow & & f^{\prime \prime}(a) & =0, \forall a \in R \end{aligned} $$

$\Rightarrow f(x)$ must have maximum degree 1 .



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक