Indefinite Integration 1 Question 4

5. The value of the integral 01xcot1(1x2+x4)dx is

(a) π412loge2

(b) π212loge2

(c) π4loge2

(d) π2loge2

(2019 Main, 9 April II)

Show Answer

Solution:

  1. Let I=01xcot1(1x2+x4)dx

Now, put x2=t2xdx=dt

Lower limit at x=0,t=0

Upper limit at x=1,t=1

I=1201cot1(1t+t2)dt

=1201tan111t+t2dtcot1x=tan11x=1201tan1t(t1)1+t(t1)dt=1201(tan1ttan1(t1)dttan1xy1+xy=tan1xtan1y01tan1(t1)dt=01tan1(1t1)dt=01tan1(t)dt

because 0af(x)dx=0af(ax)dx

So, I=1201(tan1t+tan1t)dt

=01tan1tdt=[ttan1t]0101t1+t2dt

[by integration by parts method]

=π412[loge(1+t2)]01=π412loge2



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक