Indefinite Integration 1 Question 38

39. For any integer $n$, the integral $\int _0^{\pi} e^{\cos ^{2} x} \cos ^{3}(2 n+1) x d x$ has the value

(1985, 2M)

(a) $\pi$

(b) 1

(c) 0

(d) None of these

Show Answer

Solution:

  1. Let $I=\int _0^{\pi} e^{\cos ^{2} x} \cdot \cos ^{3}{(2 n+1) x} d x$

$$ 0, \quad f(a-x)=-f(x) $$

Again, let $f(x)=e^{\cos ^{2} x} \cdot \cos ^{3}{(2 n+1) x}$

$\therefore \quad f(\pi-x)=\left(e^{\cos ^{2} x}\right){-\cos ^{3}(2 n+1) x }=-f(x)$

$$ \therefore \quad I=0 $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक