Indefinite Integration 1 Question 35

36. If $f(x)=A \sin \frac{\pi x}{2}+B$,

$f^{\prime} \frac{1}{2}=\sqrt{2}$ and $\int _0^{1} f(x) d x=\frac{2 A}{\pi}$, then constants

$A$ and $B$ are

(1995, 2M)

(a) $\frac{\pi}{2}$ and $\frac{\pi}{2}$

(b) $\frac{2}{\pi}$ and $\frac{3}{\pi}$

(c) 0 and $-\frac{4}{\pi}$

(d) $\frac{4}{\pi}$ and 0

Show Answer

Solution:

  1. Given, $f(x)=A \sin \frac{\pi x}{2}+B, f^{\prime} \frac{1}{2}=\sqrt{2}$

$$ \text { and } \quad \int _0^{1} f(x) d x=\frac{2 A}{\pi} $$

$$ f^{\prime}(x)=\frac{A \pi}{2} \cos \frac{\pi x}{2} \Rightarrow f^{\prime} \frac{1}{2}=\frac{A \pi}{2} \cos \frac{\pi}{4}=\frac{A \pi}{2 \sqrt{2}} $$

$$ \text { But } \quad f^{\prime} \frac{1}{2}=\sqrt{2} \therefore \quad \frac{A \pi}{2 \sqrt{2}}=\sqrt{2} \quad \Rightarrow \quad A=\frac{4}{\pi} $$

Now, $\int _0^{1} f(x) d x=\frac{2 A}{\pi} \Rightarrow \int _0^{1} A \sin \frac{\pi x}{2}+B d x=\frac{2 A}{\pi}$

$$ \begin{aligned} \Rightarrow & -\frac{2 A}{\pi} \cos \frac{\pi x}{2}+B x & =\frac{2 A}{\pi} \Rightarrow B+\frac{2 A}{\pi}=\frac{2 A}{\pi} \\ \Rightarrow & B & =0 \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक