Indefinite Integration 1 Question 33

34. Let $f$ be a positive function.

If $I _1=\int _{1-k}^{k} x f[x(1-x)] d x$ and

$$ I _2=\int _{1-k}^{k} f[x(1-x)] d x \text {, where } 2 k-1>0 $$

Then, $\frac{I _1}{I _2}$ is

(1997C, 2M)

(a) 2

(b) $k$

(c) $1 / 2$

(d) 1

Show Answer

Solution:

  1. Given, $I _1=\int _{1-k}^{k} x f[x(1-x)] d x$

$$ \begin{aligned} \Rightarrow \quad I _1 & =\int _{1-k}^{k}(1-x) f[(1-x) x] d x \\ & \left.\left.=\int _{1-k}^{k} f[(1-x)] d x\right]-\int _{1-k}^{k} x f(1-x)\right] d x \\ \Rightarrow \quad I _1 & =I _2-I _1 \Rightarrow \frac{I _1}{I _2}=\frac{1}{2} \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक