Indefinite Integration 1 Question 30

31. $\int _{\pi / 4}^{3 \pi / 4} \frac{d x}{1+\cos x}$ is equal to

$(1999,2 M)$

(a) 2

(b) -2

(c) $\frac{1}{2}$

(d) $-\frac{1}{2}$

Show Answer

Solution:

  1. Let

$$ I=\int _{\pi / 4}^{3 \pi / 4} \frac{d x}{1+\cos x} $$

$$ \begin{aligned} \Rightarrow \quad I & =\int _{\pi / 4}^{3 \pi / 4} \frac{d x}{1+\cos (\pi-x)} \\ I & =\int _{\pi / 4}^{3 \pi / 4} \frac{d x}{1-\cos x} \end{aligned} $$

On adding Eqs. (i) and (ii), we get

$$ \begin{aligned} 2 I & =\int _{\pi / 4}^{3 \pi / 4} \frac{1}{1+\cos x}+\frac{1}{1-\cos x} d x \\ \Rightarrow \quad 2 I & =\int _{\pi / 4}^{3 \pi / 4} \frac{2}{1-\cos ^{2} x} d x \\ \Rightarrow \quad I & =\int _{\pi / 4}^{3 \pi / 4} \operatorname{cosec}^{2} x d x=[-\cot x] _{\pi / 4}^{3 \pi / 4} \\ & =-\cot \frac{3 \pi}{4}+\cot \frac{\pi}{4}=-(-1)+1=2 \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक