Indefinite Integration 1 Question 27
28. If $f(x)=\begin{array}{cc}e^{\cos x} \sin x, & \text { for }|x| \leq 2 \ 2 & \text { otherwise }\end{array}$ then $\int _{-2}^{3} f(x) d x$ is equal to
$(2000,2 M)$
(a) 0
(b) 1
(c) 2
(d) 3
Show Answer
Solution:
- Given, $f(x)=2$, otherwise
$\therefore \int _{-2}^{3} f(x) d x=\int _{-2}^{2} f(x) d x+\int _2^{3} f(x) d x$
$$ =\int _{-2}^{2} e^{\cos x} \sin x d x+\int _2^{3} 2 d x=0+2[x] _2^{3} $$
$\left[\because e^{\cos x} \sin x\right.$ is an odd function]
$$ =2[3-2]=2 \quad \because \int _{-2}^{3} f(x) d x=2 $$