Indefinite Integration 1 Question 21

22. The value of the integral $\int _{-\pi / 2}^{\pi / 2} x^{2}+\log \frac{\pi-x}{\pi+x} \cos x d x$ is

(a) 0

(b) $\frac{\pi^{2}}{2}-4$

(c) $\frac{\pi^{2}}{2}+4$

(d) $\frac{\pi^{2}}{2}$

(2012)

Show Answer

Solution:

  1. $I=\int _{-\pi / 2}^{\pi / 2} x^{2}+\log \frac{\pi-x}{\pi+x} \cos x d x$

As, $\quad \int _{-a}^{a} f(x) d x=0$, when $f(-x)=-f(x)$

$$ \begin{aligned} \therefore \quad I & =\int _{-\pi / 2}^{\pi / 2} x^{2} \cos x d x+0=2 \int _0^{\pi / 2}\left(x^{2} \cos x\right) d x \\ & =2{\left(x^{2} \sin x\right) _0^{\pi / 2}-\int _0^{\pi / 2} 2 x \cdot \sin x d x } \\ & =2 \frac{\pi^{2}}{4}-2{(-x \cdot \cos x) _0^{\pi / 2}-\int _0^{\pi / 2} 1 \cdot(-\cos x) d x } \\ & =2 \frac{\pi^{2}}{4}-2(\sin x) _0^{\pi / 2}=2 \frac{\pi^{2}}{4}-2=\frac{\pi^{2}}{2}-4 \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक