Indefinite Integration 1 Question 2

3. The integral π/6π/3sec2/3xcosec4/3xdx is equal to

(a) 35/632/3

(b) 37/635/6

(c) 35/331/3

(d) 34/331/3

(2019 Main, 10 April II)

Show Answer

Solution:

  1. Let I=π/6π/3sec2/3xcosec4/3xdx

=π/6π/31cos2/3xsin4/3xdx=π/6π/3sec2x(tanx)4/3dx

[multiplying and dividing the denominator by cos4/3x ] Put, tanx=t, upper limit, at x=π/3t=3 and lower limit, at x=π/6t=1/3

and sec2xdx=dt

 So, I=1/33dtt4/3=t1/31/3=3131/331/6=331/6331/6=37/635/6



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक