Indefinite Integration 1 Question 16

17. $\int _{\pi / 4}^{3 \pi / 4} \frac{d x}{1+\cos x}$ is equal to

(a) -2

(b) 2

(c) 4

(d) -1

(2017 Main)

Show Answer

Solution:

  1. Let $I=\int _{\pi / 4}^{3 \pi / 4} \frac{d x}{1+\cos x}=\int _{\pi / 4}^{3 \pi / 4} \frac{1-\cos x}{1-\cos ^{2} x} d x$

$$ \begin{aligned} & =\int _{\pi / 4}^{3 \pi / 4} \frac{1-\cos x}{\sin ^{2} x} d x \\ & =\int _{\pi / 4}^{3 \pi / 4}\left(\operatorname{cosec}^{2} x-\operatorname{cosec} x \cot x\right) d x \\ & =[-\cot x+\operatorname{cosec} x] _{\pi / 4}^{3 \pi / 4} \\ & =[(1+\sqrt{2})-(-1+\sqrt{2})]=2 \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक