Indefinite Integration 1 Question 11

12. The value of the integral $\int _{-2}^{2} \frac{\sin ^{2} x}{\frac{x}{\pi}+\frac{1}{2}} d x$

(where, $[x]$ denotes the greatest integer less than or equal to $x$ ) is

(2019 Main, 11 Jan I)

(a) $4-\sin 4$

(b) 4

(c) $\sin 4$

(d) 0

Show Answer

Solution:

  1. Let $I=\int _{-2}^{2} \frac{\sin ^{2} x}{\frac{1}{2}+\frac{x}{\pi}} d x$

Also, let $f(x)=\frac{\sin ^{2} x}{\frac{1}{2}+\frac{x}{\pi}}$

Then, $f(-x)=\frac{\sin ^{2}(-x)}{\frac{1}{2}+-\frac{x}{\pi}}($ replacing $x$ by $-x)$

$$ \begin{aligned} & =\frac{\sin ^{2} x}{\frac{1}{2}+-1-\frac{x}{\pi}} \because[-x]=\begin{array}{cc} -[x], & \text { if } x \in I \\ -1-[x], & \text { if } x \notin I \end{array} \\ \Rightarrow \quad f(-x) & =-\frac{\sin ^{2} x}{\frac{1}{2}+\frac{x}{\pi}}=-f(x) \end{aligned} $$

i.e. $f(x)$ is odd function

$$ \therefore I=0 \quad \because \int _{-a}^{a} f(x) d x=\begin{gathered} 0, \text { if } f(x) \text { is odd function } \\ 2 \int _0^{a} f(x) d x, \text { if } f(x) \text { is even function } \end{gathered} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक