Hyperbola 2 Question 11

11. Consider the hyperbola H:x2y2=1 and a circle S with centre N(x2,0). Suppose that H and S touch each other at a point P(x1,y1) with x1>1 and y1>0. The common tangent to H and S at P intersects the X-axis at point M. If (l,m) is the centroid of PMN, then the correct expression(s) is/are

(2015 Adv.)

(a) dldx1=113x12 for x1>1

(b) dmdx1=x13(x121) for x1>1

(c) dldx1=1+13x12 for x1>1

(d) dmdy1=13 for y1>0

Show Answer

Answer:

Correct Answer: 11. (a)

Solution:

Equation of family of circles touching hyperbola at (x1,y1) is (xx1)2+(yy1)2+λ(xx1yy11)=0

Now, its centre is (x2,0).

(λx12x1)2,(2y1λy1)2=(x2,0)2y1+λy1=0λ=2 and 2x1λx1=2x2x2=2x1

P(x1,x121) and N(x2,0)=(2x1,0)

As tangent intersect X-axis at M1x1,0.

Centroid of PMN=(l,m)

3x1+1x13,y1+0+03=(l,m)

l=3x1+1x13

On differentiating w.r.t. x1, we get dldx1=31x123

dldx1=113x12, for x1>1 and m=x1213

On differentiating w.r.t. x1, we get

Also,

dmdx1=2x12×3x121=x13x121 for x1>1

On differentiating w.r.t. y1, we get dmdy1=13, for y1>0



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक