Hyperbola 2 Question 10

10. If $2 x-y+1=0$ is a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{16}=1$ then which of the following CANNOT be sides of a right angled triangle?

(2017 Adv.)

(a) $a, 4,1$

(b) $2 a, 4,1$

(c) $a, 4,2$

(d) $2 a, 8,1$

Show Answer

Answer:

Correct Answer: 10. $(a, b)$

Solution:

  1. Tangent $\equiv 2 x-y+1=0$

Hyperbola $\equiv \frac{x^{2}}{a^{2}}-\frac{y^{2}}{16}=1$

It point $\equiv(a \sec \theta, 4 \tan \theta)$

$$ \text { tangent } \equiv \frac{x \sec \theta}{a}-\frac{y \tan \theta}{4}=1 $$

On comparing, we get $\sec \theta=-2 a$

$$ \begin{aligned} & & \tan \theta=-4 \Rightarrow 4 a^{2}-16=1 \\ \therefore & a & =\frac{\sqrt{17}}{2} \end{aligned} $$

Substitute the value of $a$ in option (a), (b), (c) and (d).



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक