Hyperbola 1 Question 3

4. If the vertices of a hyperbola be at $(-2,0)$ and $(2,0)$ and one of its foci be at $(-3,0)$, then which one of the following points does not lie on this hyperbola?

(a) $(2 \sqrt{6}, 5)$

(b) $(6,5 \sqrt{2})$

(c) $(4, \sqrt{15})$

(d) $(-6,2 \sqrt{10})$

(2019 Main, 12 Jan I)

Show Answer

Answer:

Correct Answer: 4. (c)

Solution:

  1. The vertices of hyperbola are given as $( \pm 2,0)$ and one of its foci is at $(-3,0)$.

$\therefore(a, 0)=(2,0)$ and $(-a e, 0),=(-3,0)$

On comparing $x$-coordinates both sides, we get

$\Rightarrow \quad a=2$ and $-a e=-3$

$\Rightarrow 2 e=3 \Rightarrow e=\frac{3}{2}$

Also, $\quad \frac{9}{4}=1+\frac{b^{2}}{4} \Rightarrow b^{2}=5$

$\because e^{2}=1+\frac{b^{2}}{a^{2}}$

So, equation of the hyperbola is

$$ \frac{x^{2}}{4}-\frac{y^{2}}{5}=1 $$

The point $(6,5 \sqrt{2})$ from the given options does not satisfy the above equation of hyperbola.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक