Hyperbola 1 Question 16

17. A variable straight line of slope 4 intersects the hyperbola xy=1 at two points. Find the locus of the point which divides the line segment between these two points in the ratio 1:2.

(1997, 5M)

Match the List

Show Answer

Solution:

  1. Let y=4x+c meets xy=1 at two points A and B.

i.e. A(t1,1/t1),B(t2,1/t2) Coordinates of P are

2t1+t22+1,21t1+11t22+1=(h,k)

h=2t1+t23 and k=2t2+t13t1t2

Also, t1,1t1 and t2,1t2 lie on y=4x+c.

1t21t1t2t1=1t1t2=4 or t1t2=1/4

From Eq. (i), t1=2h+k4

 and t1=hk2

From Eqs. (ii) and (iii), hk22h+k4=14

2h+k28h+k4=14(2h+k)(8h+k)=216h2+k2+10hk=2

Hence, required locus is 16x2+y2+10xy=2.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक