Hyperbola 1 Question 12

13. For hyperbola $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$, which of the following remains constant with change in ’ $\alpha$ ‘? (2003, 1M)

(a) Abscissae of vertices

(b) Abscissae of foci

(c) Eccentricity

(d) Directrix

$(2006,3 M)$

Show Answer

Answer:

Correct Answer: 13. (b)

Solution:

  1. Given equation of hyperbola is $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$

Here, $\quad a^{2}=\cos ^{2} \alpha$ and $b^{2}=\sin ^{2} \alpha$

[i.e. comparing with standard equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ ]

We know that, foci $=( \pm a e, 0)$

where, $a e=\sqrt{a^{2}+b^{2}}=\sqrt{\cos ^{2} \alpha+\sin ^{2} \alpha}=1$ $\Rightarrow \quad$ Foci $=( \pm 1,0)$

where, vertices are $( \pm \cos \alpha, 0)$.

Eccentricity, $\quad a e=1$ or $e=\frac{1}{\cos \alpha}$

Hence, foci remains constant with change in $\alpha$.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक