Functions 2 Question 8

9. Let $g(x)=1+x-[x]$ and $f(x)=0, \quad x=0$, then for all $1, \quad x>0$

$x, f[g(x)]$ is equal to

(a) $x$

(b) 1

(c) $f(x)$

(d) $g(x)$

(2001, 1M)

Show Answer

Answer:

Correct Answer: 9. (b)

Solution:

  1. $g(x)=1+x-[x]$ is greater than 1

since $x-[x]>0$

$f[g(x)]=1$, since $f(x)=1$ for all $x>0$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक